
Virtual World Accessibility with the Perspective Viewer

Rynhardt Kruger and Lynette van Zijl

1Stellenbosch University, Department of Computer Science,

Stellenbosch, South Africa

rpkruger@ml.sun.ac.za, lvzijl@cs.sun.ac.za

ABSTRACT

Virtual worlds are mostly inaccessible to blind users, due

to their exclusively graphical interfaces. We developed

the Perspective viewer for Second Life and OpenSim

virtual worlds, which enables blind users to explore and

navigate Second Life virtual worlds with relative ease.

The Perspective viewer allows different tools to be

modularly added to the viewer, to enable comparison

amongst different tools proposed in accessibility

research. The Perspective viewer and its set of

navigation and exploration tools are described here, with

an analysis of the types of tools essential to the blind user

in the navigation and exploration of virtual worlds. In

particular, the manner in which the audio channel uses

and filters information in the navigation of the virtual

world, is highlighted. The development of the viewer

enabled us to make several recommendations for virtual

world accessibility standards.

1. INTRODUCTION

Virtual worlds are virtual representations of physical

environments. These virtual worlds are typically hosted

online, and can be accessed through a virtual world

viewer, analogous to a web browser. The user creates an

avatar as a digital representation of himself, in order to

explore the virtual world. The avatar therefore acts, in a

certain sense, like a cursor in an electronic document – it

establishes the position of the user in the virtual world.

Virtual worlds usually provide output in a primarily

graphical fashion, to allow (sighted) users to interact with

the virtual world environment. Audio is used as a

secondary output medium, but usually only for a more

realistic simulation of the virtual world rather than to

convey essential navigational information. Graphical

output is inaccessible to blind users, since most screen

readers cannot interpret graphical content. Therefore, an

alternative medium must be used to provide access to

virtual worlds for blind users. To this end, a virtual world

client (including a viewer) was developed, which

provides interaction with the virtual world through audio

and synthesized speech.

Our virtual world client, called Perspective [1,2], has a

three-fold use. Firstly, it can be employed by blind users

for accessing virtual worlds. Secondly, it can be utilized

to study accessible methods for representing the state of a

virtual world. And thirdly, it can be used to evaluate

virtual world accessibility in general, in order to work

towards an accessibility standard for virtual worlds,

similar to the Web Content Accessibility Guidelines [3].

In this paper we present the Perspective viewer (see

Figure 1) and the navigation and exploration tools it

provides. Experience with the viewer leads to our

findings on the state of virtual world accessibility,

specifically with regards to Second Life and compatible

virtual worlds. In particular, virtual world building

practices which will increase accessibility, are noted.

Also, it is shown that an accessibility paradigm, similar to

graphical user interface accessibility paradigms, can be

used to extend the information provided to virtual world

clients, to present a more accurate representation to the

blind user.

Figure 1. Virtual world viewer in use at an OpenSim virtual

conference [2].

2. BACKGROUND

Accessibility for the blind in virtual world environments

has received some attention in the literature. White et al

[4] analyzed accessibility issues, and made

recommendations for the improvement of accessibility in

virtual worlds. Folmer et al [5] developed the TextSL

viewer for Second Life, based exclusively on textual

descriptions. The user controls their avatar by means of

textual commands, and all objects in the virtual world are

presented by textual descriptions. The use of audemes

(short duration sounds) to identify concepts was proposed

by Ferati et al [6] in an information reviewing tool for

blind children. Audemes are applicable in virtual worlds

as well. More recently, Maidenbaum et al [7] proposed

the use of Sensory Substitution Devices which provide

visual information in virtual worlds via the other senses.

For example, they developed the Eyecane, which can be

used for object recognition and navigation. In addition,

certain audio games developed specifically for

accessibility, can also contribute to virtual world Copyright: © 2015 Kruger et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

105

mailto:rpkruger@ml.sun.ac.za,%20lvzijl@cs.sun.ac.za
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

accessibility techniques. Examples include PowerUp by

Trewin et al [8], Terraformers by Westin [9],

AudioQuake [10] and Shades of Doom [11]. Lastly, the

accessiblity techniques for standard graphical user

interfaces may also be useful in the case of virtual

worlds. In particular, the question of focus played a

notable part in the navigation tools in the Perspective

viewer.

The reader may note that in the systems above, tools

were developed that were specific to the given

implementation or game. In contrast, the Perspective

viewer allows for the modular interchangeability of tools,

thus providing a research environment with which such

tools may be compared and evaluated.

Essential to the development of an accessible virtual

world client, is the protocol of the virtual world itself, as

the protocol determines what information about the

virtual world to expose to the client. As Second Life [12]

is currently the most widely used virtual world, the

Perspective client was developed for Second Life (and

the compatible opensource virtual world OpenSim [13]).

The information typically available to Second Life virtual

world clients, and how they can be used by an accessible

client, are described below.

2.1 Virtual Worlds

Virtual world software consists of two parts: a server

maintains the model of the world being emulated, as well

as the current state of the world. Client programs connect

to the server and present the world to the users. The

communication between server and clients is done by the

use of a common protocol.

In the Second Life protocol, the state of the virtual

world is represented by the state of each object in the

region where the user’s avatar is currently located. An

object can consist of one or more primitives. Each

primitive describes a shape, such as a cylinder or a cube,

and attributes such as the scale, rotation, and current

position of the primitive. Each primitive also contains a

list of properties, containing extra information about the

primitive. Common properties include the primitive’s

name, description, access permissions, and so on.

The current Second Life protocol enables alternative

representations of the virtual world through the attributes

and the properties of each primitive. Object names, along

with their positions, can be conveyed to the blind user via

3D audio and synthesized speech. However, with the

current protocol, the clients are unable to identify the type

of an object, for instance whether it is a chair or a door.

Blind users typically require more state information as

well, such as whether a door is open or closed, or whether

a switch is enabled or disabled. For such functionality to

be available, a paradigm similar to graphical user

interface accessibility should be used.

2.2 Graphical User Interface Accessibility

Accessibility APIs are an established method of

providing accessibility for graphical user interfaces.

These interfaces may be desktop environments, but more

recently also mobile platforms. Common accessibility

APIs include the Android Accessibility API [14], the

Accessible Service Provider Interface (ATSPI) on Linux

and Unix desktops [15], and the Microsoft Active

Accessibility framework on Windows [16]. Most current

accessibility APIs were developed for 2D graphical

environments. However, the methodology employed can

be adapted for 3D environments such as virtual worlds.

An accessibility API serves as a bridge between the

graphical user interface (an application or the desktop

environment itself), and a screen reader. The accessibility

API converts each component of the user interface into

an object that can be queried by the screen reader. The

accessibility API also notifies the screen reader when a

user interface event occurs, for example when a

component gains focus or a key is pressed. The screen

reader interprets the information made available by the

accessibility API, and presents it to the user via

synthesized speech and/or Braille.

Each object maintained by the accessibility API

contains three aspects that can be queried by the screen

reader: roles, states, and properties. A role denotes the

type of underlying user interface component, and the

actions possible with the component. A role may for

instance indicate that the component is a pushbutton, and

thus the user can click it. A state indicates the current

state of the component; for example, whether a checkbox

is checked or unchecked, or a pushbutton is pressed or

not. A property contains extra information about the

component, such as its position on the screen, its name

and its description.

All the objects maintained by the accessibility API are

collected in a tree structure, denoting their logical relation

to each other. The root of the tree may for instance be the

toplevel window of the current application. Its direct

children will then be the menubar of the application, and

the component denoting the content area of the

application. The content area itself may be a complex

component such as a treeview or table, in which case it

will have children itself.

Two standards are maintained by the World Wide Web

Consortium, to ensure accessibility on the web. These

standards serve as guidelines for web developers, as well

as providing HTML tags for converting information on

the web to a format suitable for an accessibility API. The

Web Content Accessibility Guidelines (WCAG) [3] is a

set of guidelines for web developers. Guidelines include

the use of alternative text for images, and captions for

videos. The WCAG also advises on practices to ensure a

more accessible experience, such as a link at the top of a

page to move to the content. The Accessible Rich Internet

Applications (WAI-ARIA) [17], on the other hand, is

both a set of guidelines, and HTML tags which can be

used to convey information about the properties of a web

page to the accessibility API running on the user’s

desktop. These tags allow a web developer to specify

roles for custom components defined within the page.

Adding defined roles to components allow screen readers

to better interpret the behavior of the components.

The design of the Perspective client draws from most of

the principles discussed above, and is discussed in the

next section.

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

106

3. THE PERSPECTIVE CLIENT

The Perspective client consists of a framework containing

a core API, and navigation and exploration tools

developed using the API (see Figure 2). The core of the

system lies in the bottom two blocks, namely, the specific

exploration and navigation tool modules, and the

command tool to control the Perspective modules. The

terminal provides a dedicated text communication

between the user and the viewer, and calls the text to

speech libraries. Finally, on the top level, the user

interface allows for limited graphical output for sighted

users, and text interaction with blind users. The

connection to the virtual world is established via the user

interface.

Figure 2. Components of the Perspective viewer

The blind user of a virtual world must be able to

navigate (move through) the virtual world, and explore a

certain region, all without the benefit of sight. Hence, the

objects in the world must be described via the audio

channel.
1
 This leads to an overload on the audio channel,

and our tools were designed precisely to balance the

demands on the audio channel, whilst providing the

necessary information relevant to the current environment

of the user.

The tools allow the blind user to explore and navigate

through the virtual environment by several methods. The

tools include a virtual sonar, a realtime auditory display

of objects around the user's avatar, and a tool allowing

exploration of the virtual region as a 3D grid. All the

tools make use of the Perspective core API, which in turn

makes use of information provided through the Second

Life protocol.

3.1 Interaction, focus, object names, and scope

To use the Perspective viewer[1], the user types in textual

commands (preceeded by a “/” character), or uses the two

types of keystrokes available. The keystrokes are the

reading keys, and the action keys. Reading keys allow a

user to request that previously spoken output be repeated,

1
 The use of haptic feedback as an output channel is not considered in

this work.

and the unit of spoken output may be a line, word or

character. Action keys, on the other hand, let the user

take actions, such as to control the avatar, or to

investigate menu options.

Sighted users typically use a mouse click to focus on a

specific object, or click on a menu item to put focus on

the menu. In the text-based environment of the

Perspective viewer, the functionality of a current focus or

focus change is achieved by maintaining a reference to

the object currently in focus. Any actions are then

performed on the object in focus. To change the focus to

a different object, the user has several possibilities. The

auto focus tool (see Section 3.2 below) automatically puts

the focus on the object nearest to the user’s avatar.

Alternatively, the user may select the focused object from

a menu, or search for an object to receive focus, with

(part of) a text string in its name.

To identify a (focused) object to the user, the

Perspective viewer identifies the object by its name. This

presents a problem if the creator of the object did not give

it a descriptive name, which is often the case. Hence, the

Perspective viewer maintains two lists of objects that can

be queried by the user, namely, a list of named objects

and a list of unnamed objects. To improve navigation and

exploration, the list of named objects is filtered to remove

occluded objects, and remove objects with duplicate

names except the one nearest to the user. The removal of

occluded objects prevents the user from incorrectly trying

to interact with objects not available for interaction, such

as an object in another room. The filtering of duplicate

objects assists the user in interacting only with the most

relevant of the duplicate objects, such as in the case of a

room with four walls – the user typically wants to interact

only with the wall nearest to the avatar.

Note that it is also necessary to sensibly define user

interaction with complex objects, which are constructed

from basic objects. Second Life organises complex

objects into a so-called link set, with a root object and

children objects[12]. The question is whether to identify

only the root object to the user, or the children objects as

well. Presenting too many objects overloads the audio

channel, but if only root objects are presented, important

children objects (such as the on/off switch on a machine)

may be missed. The Perspective viewer attempts a

compromise in this regard. It presents all named objects

to the user by default, but the user can filter the objects

(using the left scan and right scan tools) to only discover

root objects.

The number of objects presented to the user must be

manageable over the audio channel. Hence, the

Perspective viewer differentiates between objects in local

scope, and objects in global scope. Local scope is the

area within a 10m radius from the user’s avatar, while

global scope is the whole of the current region – local

scope was chosen to coincide with the chat range in

Second Life. The reader may note that most audio games

operate in local scope only, as the exploration of the

world is part of the game[11].

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

107

3.2 Navigation and Exploration Tools in Perspective

All navigation and exploration tools in the Perspective

viewer either provide continuous output, or provide

output only on activation. In addition, user feedback

indicated that volume control is essential for continuous

output tools, and this feature is available where

applicable.

The audio compass tool allows for avatar orientation.

The user may request to hear the current direction that the

avatar is facing (say, north-north east), or turn their avatar

clockwise or anticlockwise, and the new direction is

spoken. A similar tool was used in Terraformers [9]. The

ability to turn is implemented in the turning keys tool,

and is similar in operation to that found in PowerUp [8].

In addition, by pressing the turning keys repeatedly in

quick succession, the user can identify objects in the

immediate vicinity, as the nearest object to the avatar is

identified.

Object identification in the immediate vicinity is also

possible with the virtual sonar tool (similar to that in [6]).

Here, all the objects that are in the field of vision of the

user’s avatar, is gathered into a collection. A beep sound

in 3D audio is then emitted at the position of each of the

objects in the collection, and the names of the objects are

spoken.

To identify objects while the avatar is exploring a

region, the auto focus tool can be used. This tool

computes the nearest object to the avatar, every time that

the avatar moves. Focus is then set to that nearest object.

This is a useful tool when an area is first explored, but

may interfere with other focus-setting tools.

During exploration, the blind user may not necessarily

know if their avatar has moved when a movement

command is issued (for example, the avatar may be

blocked by an object that prevents it from moving). The

footstep module plays a footstep sound whenever

movement occurs. Note that the Second Life protocol

does not support event notification on movement, and the

footstep sound tool therefore uses current and previous

location to calculate whether movement has occurred.

For quick and effective navigation, particularly around

objects, the directional look commands can identify the

object to the left, right, and directly in front of the user.

As a further aid to navigation, the directional noise

functionality allows the user to switch on a tool which

continuously plays a different narrowband noise for each

compass direction where no objects occur. A similar

concept was used in the Shades of Doom game [11].

Additional environmental information during

movement is made available by the echo tool. This tool

bounces a clicking sound off objects in the immediate

vicinity of the user’s avatar. Likewise, the material

sound tool is meant to convey the type of each object in

the immediate vicinity – it plays the default collision

sound of the material covering the object.

During exploration, the user may wish to search for a

specific object. The Perspective viewer provides a search

function for local scope, as well as one for global scope.

The user searches by typing in a text string with part of

the name of the object. The search results are presented

in a menu. The user may also simply query the object

menus for local or global scope, or the avatar menu to

find a specific object or avatar.

The Perspective viewer implements two important

novel tools: the positional speech tool, and the grid

explorer. The positional speech tool creates a speech

sample of each of the objects in local scope, and places

the sample in 3D audio
2
 at the position of that object.

These samples are played in sequence, but the time

duration for each sample is indirectly related to its

distance from the user’s avatar. Hence, objects that are

nearest to the user’s avatar can be heard clearly, while

objects that are far away are perceived as a cluster of

voices. To avoid confusion in a highly populated

immediate vicinity (such as a virtual shopping mall), the

user may set the number of objects to be announced with

the positional speech module.

The grid explorer mimics a blind person’s experience in

learning the layout of a new environment. When the grid

explorer opens, the region is divided into eight three-

dimensional blocks. As the user moves around this

structure using the arrow keys, a summary of the objects

in each block is announced. The summary consists of the

names of the objects if there are three or less objects.

Otherwise, the name of the first object is announced,

followed by the number of remaining objects. The user

can increase or decrease the number of blocks in the grid,

effectively changing the resolution of the exploration.

The development of the Perspective viewer, and

specifically the core API, allowed for the evaluation of

the current state of accessibility of Second Life-based

virtual worlds. In particular, the information currently

accessible through the Second Life protocol was

evaluated. It is our view that information similar to the

roles, states, and properties provided by current desktop

accessibility APIs can increase the accessibility of

Second Life and compatible virtual worlds. The reader

may note that the development of the tools were essential

to lay the foundation for the accessibility

recommendations, as it exposed the current shortcomings

in the Second Life protocol and the virtual world building

practices.

3.3 Navigation and Exploration Example in

Perspective

The advantages of the Perspective viewer can be best

explained via an example. Consider the room depicted in

Figure 3. This is the view that a sighted user has of the

room, for navigation and exploration purposes. Note that

the room is (probably) rectangular in shape, with one

door leading out from the room (behind the viewpoint of

the sighted user), and the room is furnished with a desk,

two chairs, a book on the desk, and a filing cabinet.

With the usual visual format as seen by the sighted user,

the identity of each object is obtained by its shape. The

user can interact with each object via mouse clicks. For

example, if the user clicks on the chair, this will make

their avatar sit on the chair.

2
 3D audio creates a sound effect from two speakers, and seems to place

sound positionally from any direction (above, below, behind, to the

side).

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

108

With the Perspective viewer and the current Second

Life protocol, the blind user will hear the name of each

object spoken. The user may for instance hear the word

“desk chair”, followed by “desk”, “book”, and “filing

cabinet”. This assumes that the objects were labeled

properly. The user may, in the case of badly labeled

objects, instead hear “cabinet” for the filing cabinet, or

“Two Cities” for the book (representing the title).

Figure 3. An OpenSim room with desk, chairs, and filing cabinet.

Taken from [18].

If improvements to the Second Life protocol is made,

and the roles, states, and properties of the room in

question is properly defined, the user may hear “cabinet –

container” for the filing cabinet, or “desk chair – chair,

approach from left” for the chair. The book may be

identified as “Two Cities – book, with title A Tale of

Two Cities”, and the door as “oak door – door, currently

closed”.

The reader may note the recommended navigation

information (approach from left), or the state of objects

(door, currently closed). In the next section, we consider

these types of recommendations in more detail.

4. ACCESSIBILITY

RECOMMENDATIONS

An accessibility standard for virtual worlds should

consist of two parts: firstly, a set of guidelines for virtual

world builders, and secondly an extension to the virtual

world protocol. The guidelines should ensure that

relevant information is added to all virtual world objects,

to aid in the identification and categorization of objects

by accessible clients. The extended protocol should

facilitate the transfer of accessibility-related information

from the server to the clients.

4.1 Guidelines for Builders

Objects in Second Life compatible virtual worlds can be

identified by several means. Each object has a unique

UUID (universal unique identifier), which is suitable for

programmatic identification of objects, but not for

identification by users. For users it is more suitable to use

textual labels for identification, and each Second Life

object has a name property that can be used to this end.

However, object names are not always filled in, resulting

in the object having a default name such as “object” or

“primitive”. Therefore we propose that object names be

filled in at all times. This practice should be encouraged

by the build tools of clients, by not filling in a default

name. The builder should also be prompted to enter a

suitable name, and the prompt should explain the role of

the name as an accessibility aid.

Objects in Second Life also have a description property,

which can be used to add more detail about the object.

However, this description property is rarely filled in. We

propose that the name property be kept as short as is

needed to aid identification, but that more detailed

information be entered in the description property. This

should also be encouraged by a suitable prompt within

the build environment. The object description should be

updated as the state and/or shape of an object changes.

4.2 Extensions to the Build Tools and Protocol

Roles are used in graphical user interface accessibility

APIs to denote the types of underlying components.

However, roles can also be useful to identify the types of

virtual objects. Within graphical user interfaces, roles

include pushbuttons and checkboxes, but within virtual

worlds may include objects such as doors and chairs.

Identification of object types will enable the client to

categorize objects of a certain type. This will enable users

to more easily find specific objects, such as a chair at a

convention, or a door to exit a room. Object roles will

also enable the user to quickly grasp the behavior of an

object, and therefore the actions that can be performed

with it. The Perspective client can deduce some object

roles by examining the default action of an object. For

instance, if the action is to sit, the object is probably a

chair. However, this method is unreliable, since unrelated

objects may have the same default action. We propose

that roles be added to virtual world objects as attributes

that can be set at build time.

States are used in graphical interface accessibility APIs

to denote the current state of a component. However,

states can also be used in virtual worlds to denote the

state of an object. In virtual worlds, states of objects may

include “open” in the case of a door, or “activated” in the

case of equipment. The state of an object influences the

actions possible with it. Currently it is not possible to

deduce the state of an object with the current Second Life

protocol, and hence the user needs to test actions on an

object to deduce the state himself. An example of this is

to walk through a door, and if that movement is allowed,

the door is open. Therefore we propose that states be

added to virtual world objects, and be communicated

with the Second Life protocol.

Properties are used by graphical user interface

accessibility APIs to specify more information about an

underlying component. Second Life already includes a

mechanism for specifying object properties. However, the

list of properties could be extended to be more relevant

for accessibility. For instance, it is possible to query the

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

109

rotation of a virtual object, but this rotation property only

specifies the rotation of its shape, not the logical

orientation of the object. The logical orientation of an

object could be useful to denote the direction in which a

door or a staircase should be approached, or the direction

faced when sitting on a chair. Therefore we propose that

properties similar to the logical orientation property be

added to virtual world objects.

Accessibility APIs designed for graphical user

interfaces have an event mechanism for notifying

assistive technologies about changes in the user interface.

Second Life also has an event mechanism, but we

propose that accessibility relevant events be added to this

mechanism. Specifically, an event should be added to

indicate state changes of an object. This may include a

door being opened, or another avatar sitting on a chair.

An event should be added to denote collisions between

objects, as currently only collisions between avatars are

indicated.

5. CONCLUSIONS

The Perspective viewer provides a mechanism for blind

users to use virtual worlds; it provides a framework to

compare different accessibility tools in the virtual world

context; and it enabled us to set up a short set of

guidelines and recommendations with respect to virtual

world accessibility for the blind.

As future work, we intend to conduct a full user case

study with a sizable set of blind participants, to evaluate

each tool in full. We also intend to explore more tools, in

order to refine the proposed accessibility guidelines and

recommendations.

Acknowledgments

This work is based on research supported in part by the

National Research Foundation of South Africa (grant

number 90584). Financial support of the first author by

MIH is acknowledged.

REFERENCES

[1] R.P. Kruger, Virtual world accessibility: a multitool

approach, MSc thesis, Stellenbosch University,

2014.

[2] R.P. Kruger and L. van Zijl, “Rendering virtual

worlds in audio and text”, in Proc. 6
th

 Int. Workshop

on Massive Multi-user Virtual Environments,

Singapore, 2014, pp. 5:1-5:2.

[3] W3C, “Web Content Accessibility Guidelines

(WCAG) 2.0,” http://www.w3.org/TR/WCAG20/.

[4] G. White, G. Fitzpatrick, and G. McAllister, “Toward

accessible 3D virtual environments for the blind and

visually impaired,” in Proc. of the 3rd Int. Conf. on

DigitalInteractive Media in Entertainment and Arts,

Athens, 2008, pp. 134–141.

[5] E. Folmer, B. Yuan, D. Carr, and M. Sapre, “TextSL:

a command-based virtual world interface for the

visually impaired,” in Proc. of the 11th Int. ACM

SIGACCESS Conf. on Computers and Accessibility,

Pittsburgh, 2009, pp. 59–66.

[6] M. Ferati, S. Mannheimer, and D. Bolchini, “Acoustic

interaction design through ”audemes”: experiences

with the blind,” in Proc. of the 27th ACM Int. Conf.

on Design of Communication, Bloomington, 2009,

pp. 23–28.

[7] S. Maidenbaum, D.R. Chebat, S. Levy-Tzedek, and

A. Amedi, “Depth-to-audio sensory substitution for

increasing the accessibility of virtual environments,”

in Proc. of the 8
th

 Int. Conf. on Human Computer

Interaction, Greece, 2014, pp. 398–406.

[8] S. Trewin, V. Hanson, M. Laff, and A. Cavender,

“PowerUp: an accessible virtual world,” in Proc. of

the 10th Int. ACM SIGACCESS Conf. on Computers

and Accessibility, Halifax, 2008, pp. 177–184.

[9] T. Westin, “Game accessibility case study:

Terraformers: a real-time 3D graphic game,” in

Proc. of the 5th Int. Conf. on Disability, Virtual

Reality and Associated Technologies, Oxford, 2004,

pp. 95–100.

[10] M. Atkinson, S. Gucukoglu, C.H.C. Machin and

A.E. Lawrence, “Making the mainstream

accessible: redefining the game,” in Proc. of the

2006 ACM SIGGRAPH Symp. on Videogames,

Boston, 2006, pp. 21—28.

[11] GMAGames, “Shades of Doom audio game,”

http://gmagames.com/sod.shtml.

[12] Linden Labs, “Second Life Official Site,”

http://www.secondlife.com.

[13] OpenSim contributors, “OpenSim,”

http://www.opensimulator.org.

[14] Android developers, “Accessibility,”

http://developer.android.com/guide/topics/ui/accessi

bility/index.html.

[15] The Linux Foundation, “atk/at-spi,”

http://www.linuxfoundation.org/collaborate/workgr

oups/accessibility/atk/at-spi.

[16] Microsoft Corporation, “Microsoft Active

Accessibility,” http://msdn.microsoft.com/en-

us/library/ms971350.aspx.

[17] W3C, “Accessible Rich Internet Applications (WAI-

ARIA) 1.0,” http://www.w3.org/TR/wai-aria/.

[18] https://marketplace.secondlife.com/p/NEW-1950s-

Private-EyeDetectives-Office-with-

DeskChairsLampFanPhoneHatStandMore/158773

G. Kouroupetroglou (Ed.), Proceedings of ICEAPVI, 12-14 February 2015, Athens, Greece

110

http://www.w3.org/TR/WCAG20/
http://gmagames.com/sod.shtml
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://www.linuxfoundation.org/collaborate/workgroups/accessibility/atk/at-spi
http://www.linuxfoundation.org/collaborate/workgroups/accessibility/atk/at-spi
http://www.w3.org/TR/wai-aria/

